

CLIMATE & ECONOMIC DEVELOPMENT PROJECT SOUTHERN CALIFORNIA

Climate & Economic Development Project

Energy, Commerce, and Resources (ECR)
Technical Work Group (TWG)

Teleconference #1

September 30, 2010

Southern California Association of Governments

The Center for Climate Strategies

http://cedp.scag.ca.gov

Agenda

- Welcome and Roll Call
- Purpose and Goals of PSC and ECR TWG Meeting #1
- Update on regional goal setting by SCAG
- Background and Review of the PSC and TWG process and resources, including role of the ECR TWG
- Review and discussion of the ECR Catalog of Potential Actions
- Review and discussion of the Inventory and Forecast Report
- Next Steps for the TWG
- Agenda, Date and Time for Next Meetings
- Public Comments
- Announcements
- Adjourn

OVERVIEW

Energy, Commerce, Resources TWG Sectors

- Residential, Commercial, and Industrial Energy Demand
- Energy Supply (Heat and Power)
- Agriculture, Forestry and Waste
- Cross-Cutting Issues

CEDP: Goals

Create cost-effective and equitable strategies for:

- Economic development
- Pollution reduction
- Housing and transportation planning
- Economically viable and livable communities
- Energy, Commerce, and Resource management
 All yielding a regional strategy that will also

reduce GHG's.

CEDP: Overview

- AB 32 and SB 375 establish goals, new standards, programs and partnerships for California's GHG emissions.
- SB 375 gives organizations such as SCAG the responsibility to work with local jurisdictions to develop a regional strategy for reducing GHG. AB 32 requires regional and local actions as well.
- SCAG wants to work with partner agencies, local business leaders, and technical experts from the region to identify a range of options to meet the region's needs
- A major part of the effort is the Project Stakeholders Committee citizens representing diverse local and regional perspectives from business; industry; the building/ construction, housing, and commercial real estate sectors; transportation interests; environmental groups; government; and academia.

REGIONAL GOALS UPDATE

Regional Goal Setting

ARB approved GHG reduction target for the SCAG Region

(September 23, 2010)

2020 Target – 8%

2035 Target – 13%*

*2035 target conditioned on discussions with SCAG

PROCESS AND WORK PLAN

Stepwise Planning Process

- 1. Get organized
- 2. Review and refine inventory & forecast of emissions
- 3. Identify a full range of possible actions
- 4. Identify initial priorities for analysis
- 5. Develop straw policy design proposals
- 6. Quantify initial GHG reductions and costs/savings
- 7. Fully develop policy option templates, including externalities, feasibility issues, environmental justice concerns, etc.
- 8. Develop alternatives to address barriers as needed
- 9. Aggregate and integrate results
- 10. Finalize recommendations

Building Consensus

- Deliberative democracy applied to governance
 - Comprehensive
 - Stepwise
 - Fact based
 - Transparent
 - Inclusive
 - Collaborative
 - Consensus driven

Ground Rules

- Supportive of the process
- Best effort, good faith
- Attendance at meetings
- Equal footing
- Stay current with information
- No backsliding
- Do not represent the PSC or TWG
- Make objective and timely contributions

Fact Finding

- Preliminary fact finding
 - Inventory and forecast of GHG emissions
 - Inventory of regional actions, studies
 - Catalog of potential new actions
- Joint fact finding and policy development
 - Baselines: Regional, sector and policy specific inventory and forecast of GHG emissions
 - Policy Development: Priorities for analysis, policy description,
 policy design specifications, implementation mechanisms,
 alternative solutions, GHG reduction potential, cost effectiveness

Technical and Policy Decisions

Policy Choices

- Which policy options
- How they are designed
- How they are implemented

Analysis Choices

- Which data sources
- Which key assumptions
- Which analytical methods
- Role and value of co-benefits

Decision Criteria

- GHG Reduction Potential (MMTCO2e)
- Direct or Microeconomic Impacts (Cost or Cost Saved Per Ton GHG Removed)
- Indirect or Macroeconomic Impacts (employment, income, prices, economic growth, market share)
- Distributional Impacts (entity size, socio economic status, location)
- Externalities (co-benefits and costs, such as energy and environmental improvements
- Feasibility Issues

Transparency

- Policy Selection & Design
 - Options, timing, goals, coverage, implementation tools
- Technical analysis
 - Data sources
 - Quantification methods
 - Key assumptions
 - Uncertainties

End Product: Plan of Action, Final Report

Front Matter

- Executive Summary
- Background, Purpose And Goals
- Emissions Inventory & Forecast
- PSC Recommendations & Results
 - SB 375
 - Transportation & Land Use, Systems Management, Demand Management, Infrastructure and Investment
 - AB 32
 - Other Sectors: Agriculture, Forestry, Waste Management; Energy Supply; Residential, Commercial, Industrial; Cross-Cutting Issues

Appendices

- PSC, TWG, TAP and TRC members
- Principles and Guidelines
- TWG Policy Option Results
- TWG Methodology Guidelines
- TWG Policy Option Templates
 - Transportation & Land Use, Systems Management, Demand Management, Infrastructure and Investment
 - Other Sectors: Agriculture, Forestry, Waste Management; Energy Supply; Residential, Commercial, Industrial; Cross-Cutting Issues
- Study References

Step 1: Get Organized

- Review process and timelines
- Review preliminary fact finding
 - Inventory and forecast
 - Analysis of recent actions
- Plan next steps

Technical Work Group Roles

Make recommendations to the PSC based upon mitigation and adaptation technologies, practices and policies as identified by the PSC:

- Identify full range of potential actions
- Identify suggested priorities for analysis
- Suggest straw policy designs
- Assist with analysis, development, and review of options
- Assist with development of policy alternatives
- Review and assist with the state GHG inventory and forecast

Technical Work Groups

- Transportation System and Infrastructure (TSI)
- Transportation and Land Use (TLU)
- Energy, Commerce and Resources (ECR)

TWG Sectors

Transportation System & Infrastructure

Transportation & Land Use

Energy, Commerce & Resources

Step 2: Review and Refine Inventory and Forecast

- Scope of coverage
- Data sources
- Methods
- Assumptions

Step 3: Expand the Catalog of State Actions

- Over 300 actions taken by US states
 - Existing, planned and proposed state level actions
 - Wide variety of US states
 - All sectors
 - Wide variety of implementation mechanisms
 - Will include key SCAG region actions
- TWGs will propose new potential actions
 - Starting place for identification of priorities for analysis

Step 4: Identify Initial Priorities for Analysis

	GHG Reduction Policy	Potential GHG Emissions		Other Considerations: Jobs, Env. Justice, Externalities,	Priority for	Notes / Related Actions
Option No.		Reduction	Cost per Ton	Feasibility	Analysis	in NY
AFW-1	AGRICULTURE – PRODUC	TION OF EN	VERGY AND MA	TERIALS		
1.1	Expanded Use of Biomass					
	Feedstocks for Electricity,					
	Heat, or Steam Production					
1.2	In-state Liquid Biofuels					
	Production					
1.3	Manure Digesters/Other					
	Waste Energy Utilization					
1.4	Improving Energy Capture					
	from Biomass Heat					
1.5	Expand Use of Bio-based					
	Materials					

• PSC identifies about 50 initial potential options for further analysis and development.

Step 5: Craft Straw Policy Design Proposals

- TWGs propose initial policy option design ("straw proposals") with key parameters of analysis
 - Timing
 - Goals
 - Coverage
- CCS works with TWGs to set up quantification
- Options are quantified and fleshed out for review and revision by the PSC
- PSC revisits list of potential priorities, as needed

Step 6: Prepare First Round of Quantification

- CCS prepares quantification memo, specific options for analysis of draft actions
 - US EPA Economic Guidelines, other standard references applied to climate actions
- Quantification includes:
 - GHG reduction potential (mitigation)
 - Risk reduction potential (adaptation)
 - Cost per ton of GHG removed/adaptive risk reduced
 - Direct cost/cost savings of action
- Aggregate/Integrative impacts

Step 7: Develop Full Policy Option Template

- Policy Description (Concept)
- Policy Design (Goals, Timing, Coverage)
- Potential Implementation Methods
- Related Programs and Policies (BAU)
- Quantification of costs, results
 - Data Sources, Methods and Assumptions
 - Key Uncertainties
- Externalities, as Needed
- Feasibility Issues, as Needed
- Level of Group Support
- Barriers to Consensus, if any

Step 8: Identify Alternatives to Resolve Conflicts

- Clarification, expanded information or modifications:
 - Policy design (goals, timing, coverage)
 - Implementation methods
 - Modifications to analysis (data sources, methods, assumptions)
 - List of options

Step 9: Conduct Aggregate Analysis and Relate to Goal

- Integrate measures within TWGs
- Integrate measures across TWGs
- Remove double counting
- Assess supply and demand interactions
- Assess other interactions, externalities, if/as needed
- Assess needs for margin of safety, etc.
- Evaluate effectiveness at meeting the goal

Policy Action Portfolio

Sector	Codes and Standards	Targeted Funding	Technical Assistanc e	Price Mechanisms	Agreements	Disclosure	Information and Educations
Agriculture	?	?	?	?	?	?	?
Forestry	?	?	?	?	?	?	?
Waste	?	?	?	?	?	?	?
Transportation	?	?	?	?	?	?	?
Heat & Power Supply	?	?	?	?	?	?	?
Residential, Commercial, Industrial Energy Use	?	?	?	?	?	?	?
Full Economy	?	?	?	?	?	?	?

Step 10: PSC Develops Final Report

The PSC will organize their recommendations based upon the work of the TWGs into a draft report.

After taking public comment and holding two public meetings to gather comments, the PSC will issue a final report.

CATALOG OF ACTIONS

Catalog of Actions

- Starting place for identification of PSC priorities
- Over 440 actions listed by sector
- Existing, planned and proposed regional actions
- All sectors covered with emphasis on transportation
- Wide variety of implementation mechanisms possible
- PSC/TWGs will add new potential actions

Energy, Commerce and Resources Sectors

Energy Supply

Residential, Commercial, Industrial Energy Demand

Agriculture, Forestry and Waste

Cross- Cutting Issues

Energy Supply

- Building design and operation
- Appliance and equipment efficiency
- Other efficiency options
- Conservation
- Enabling and incentive policies

Energy Demand

- Renewable energy
- Advanced fossil fuel technologies
- Waste energy recycling (capture/recovery and use)
- Enabling and incentive policies

Agriculture, Forestry and Waste

http://cedp.scag.ca.gov

- Forest protection,
- Forest establishment and restoration
- Forest management
- Agricultural practices
- Agricultural land use management
- Bioenergy production

- Source reduction,
- Expanded recycling,
- Expanded energy recovery,
- Landfill management,
- Liquid waste and wastewater conservation

Cross-Cutting

- Reporting and Registries
- Goal Setting
- Public Education and Outreach
- Lead-by-Example

Sources for Additions to SCAG Energy, Commerce and Resources

SCAG Regional Comprehensive Plan

Other Regional Climate Action Plans

- Western Climate Change Initiative
- Midwestern Greenhouse Gas Accord

State Climate Action Plans

- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Florida
- Illinois
- Maine
- Maryland
- Massachusetts
- Michigan
- Minnesota
- Montana

- New Hampshire
- New Jersey
- New Mexico
- North Carolina
- Pennsylvania
- Rhode Island
- South Carolina
- Vermont
- Virginia
- Washington
- Wisconsin

Sources for Additions to SCAG Transportation Catalogs

Sustainability Plans:

- -Burbank
- -Claremont
- -Long Beach
- -Santa Monica

Climate Action Plans:

- -Riverside
- -Laguna Beach
- -Los Angeles
- -Sacramento

Green Plans:

- -Manhattan Beach
- -Pasadena
- -Riverside
- -San Bernardino

Discussion of ECR Catalog

- See "Catalog" and "Brief Descriptions" documents
 - posted on website

DRAFT INVENTORY AND FORECAST

Inventory Approach

- Standard California Air Resources Board (ARB), US Environmental Protection Agency (US EPA), and Intergovernmental Panel on Climate Change (IPCC) methodologies, guidelines, and tools
- Emphasis on transparency, consistency, and significance
- Preference for county-level or SCAG regional data, where available
- ARB inventory data scaled to SCAG where regional data not available

Projection Approach

- Reference case—Recent Actions
 - Actions included in SCAG's projections of population, employment, and vehicle miles traveled (VMT) for 2012 Regional Transportation Plan (RTP) projection would be accounted for in analysis
 - Reductions from Pavley I vehicle standards and the Low Carbon Fuel Standard specifically accounted for in onroad baseline emissions
 - Electricity production baseline follows ARB 20% RPS scenario

Projection Approach

- Growth assumptions from existing sources
 - SCAG population and employment forecasts
 - ARB 2020 GHG projections
 - US Census Bureau
 - US Energy Information Administration (EIA)

Coverage

- Six gases per USEPA and UNFCCC guidelines
 - Carbon Dioxide (CO₂), Methane (CH₄), Nitrous Oxide (N₂O,
 Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs), Sulfur Hexafluoride (SF₆)
- All major emitting sectors
 - Transportation (onroad and nonroad)
 - Electricity Supply & Demand
 - Residential, Commercial, Industrial (RCI) Fuel Use and Non-fuel Use Processes
 - Natural gas pipeline transmission & distribution
 - Agriculture, Forestry, and Waste
- Emissions expressed as CO₂ equivalent
 - 100-year global warming potentials
 - $CO_2 = 1$; $CH_4 = 21$; $N_2O = 310$; HFC-23 = 11,700; SF6 = 23,900

Key Points

- Preliminary draft for SCAG, PSC, and TWG review and revision, as needed
- Helpful for diagnosis of GHG emissions, but not a baseline for modeling or compliance for individual options
- Consumption and Production methods
 - Consumption for all sectors
 - Production and consumption for electricity generation
 - Very simplified approach, used for initial analysis
- Gross and Net methods

SCAG & US Emissions By Sector – Year 2008

SCAG's Contribution to CA Emissions: 2008

Per Capita and GSP/GDP GHG Emissions: SCAG, CA, and US 1990-2008

Gross SCAG GHG Emissions by Sector, 1990-2035

SCAG Emissions Growth (MMtCO₂e Basis)

Transportation Emissions

2008 On-road Gasoline and Diesel

Electricity - Emissions

Electricity - Emissions

Electricity – Gross Generation

Electricity

Data Sources

- Historical
 - Electricity generation and CO₂ emissions for 2000, 2004, and 2005. CH₄ and N₂O emissions for 2005.
 - Facility-level data
 - EPA eGRID: 2002, 2006, and 2007 versions.
 - Electricity consumption, by county
 - RAND Corporation California Statistics

Forecast

- California ARB 2020 GHG Forecast.
 - "ARB Electricity Forecast Method (June 16, 2008)"

Electricity

Methodology

- Key Inputs:
 - 2000, 2004, and 2005 net generation, electricity consumption, and facility-level GHG emissions
 - Historic and projected California statewide net generation and electricity consumption
 - CA ARB 2020 Electricity Forecast assumptions
- Fill in missing inventory years based on eGRID data, project electricity generation based on ARB forecast, and estimate GHG emissions based on eGRID ratios of emissions-togeneration.
- Assign the portion of consumption not met with SCAG generation to be net imports. Multiply net imports by ARB electricity import GHG emissions factor.

Electricity

- Key Uncertainties
 - Bottom-up approach
 - Requires assumption of constant heat rate (generation/heat input) over time
 - Small sample size for some fuel types
 - Total fuel consumption not available at regional level
 - Forecasts and import GHG emission factors based on statewide projections from ARB
 - Does not factor in future New Source Review (NSR) permitting limitations for additional generation capacity

RCI: Residential Sector Emissions

RCI: Commercial/Industrial Emissions

RCI Direct Fuel Use

Data Sources

- Historical
 - California Energy Commission (CEC) county-level natural gas sales data
 - Other fuels —EIA State Energy Data for California allocated to SCAG
- Forecast
 - Residential SCAG population annual growth rate combined with projected residential fuel consumption from EIA AEO2010 (2008 – 2035)
 - Commercial/industrial AEO2010
 - Projected consumption by fuel type for EIA Pacific region

RCI Direct Fuel Use

Methods

- Historical
 - US EPA State Greenhouse Gas Inventory Tool (SIT) with ARB emission factors and SCAG fuel consumption
 - Energy consumption multiplied by emission factors
- Forecast
 - Fossil fuels annual growth rate applied to latest year of emissions
- Key Uncertainties
 - Regional projections
 - Industrial sector growth and mix

Fossil Fuel Industry Emissions

Fossil Fuel Industry

Key Assumptions

- Growth rates are process-specific, vary by activity:
 - Natural, gas—transmission, distribution
 - Oil—refining, including stationary combustion, process, and fugitive emissions
- EPA Emissions Inventory Improvement Program (EIIP) defaults for number of compressor stations per mile of pipeline
- Oil & natural gas production emissions
 - Off-shore production occurs in Federal waters
 - On-shore production emitting greater than 25,000 metric tons CO₂ per year not identified

Key Uncertainties

- On-shore oil and gas production emitting less than 25,000 metric tons CO₂ per year is likely to occur in the region
- Default SIT value of gas transmission compressor stations and storage stations.

Agriculture Emissions

Agriculture

- Data Sources
 - Crop Production/Agriculture Burning: SCAG County Annual Reports
 - Fuel Combustion: ARB Estimate
 - Livestock: SCAG County Annual Reports
 - Fertilizer: ARB Estimate
 - Soil Carbon: California Energy Commission
 - Ag Liming: ARB Estimate

Agriculture

Methods

- Crops/Ag Burning: ARB emission factors and crop production data
- Fuel Combustion: ARB emission factors and % of statewide agricultural acres
- Livestock: ARB emission factors and livestock populations
- Fertilizer: ARB emission factors and % of statewide agricultural acres
- Soil Carbon: California Energy Commission (CEC) Estimate for SCAG Counties
- Ag Liming: ARB emission factors and % of statewide agricultural acres

Agriculture

- Key Assumptions
 - Future growth for agricultural soils will follow historical trends
 - Livestock population growth will follow historical trends
- Key Uncertainties
 - County Agricultural Survey Estimates
 - Livestock numbers based on point estimates for each year to represent populations that fluctuate throughout the year
 - Fuel combustion, agricultural burning and fertilizer emissions estimates use SCAG's percentage of agricultural acres multiplied by the CA statewide emissions
 - Projections are inherently uncertain

Industrial Processes Emissions

Industrial Processes

Data sources

- Historic
 - ARB Mandatory GHG Reporting Program: Cement manufacture, T&D Transmission losses, Hydrogen production
 - California GHG Inventory: Lime manufacture, semi-conductor manufacturing, ODS substitutes, carbon dioxide consumption, limestone & dolomite consumption, soda ash consumption
 - US Bureau of Economic Analysis: GDP from four MSAs in SCAG region
- Forecast (annual growth rates from 2009 to 2035)
 - Portland Cement Association Cement Outlook: Cement Manufacture
 - Annual Energy Outlook 2010: CO₂ consumption, hydrogen production
 - Historic trends: lime manufacture, semi-conductors, soda ash consumption,
 - US EPA National GHG Inventory Forecast: ODS substitutes, electric distribution
 - No growth (categories with conflicting historical trends): Limestone and dolomite use

Industrial Processes

Methods

- Compilation of actual reported emissions
- Down-scaling of state emissions

Key Uncertainties

- Actual production data for estimating historical emissions
- Extensive use of down-scaling
- Extensive use of back casting (1990-2007)
- Growth rates used to forecast emissions
- Industry activities to reduce GHG emissions
- Industries not included (occurrence in SCAG was not confirmed)
 - Nitric acid production

Waste Management Emissions

Waste Management

Data Sources

- California ARB: Landfill CH₄ and N₂O emissions at landfills in SCAG region through 2020
- EPA 2008 Clean Water Need Survey (CWNS) database
- EPA SIT default parameters for wastewater treatment and industrial landfill emissions
- National Emissions Inventory for Open Burning assumption and urban/rural population breakdown
- State population for municipal wastewater treatment inventory and forecast

Methods

- ARB's landfill GHG emission estimates for 1990-2020. 2021-2035 based on linear extrapolation of 2008-2020 emissions
- Industrial landfill emissions assumed to be 7% of potential landfill CH₄ emissions
- SIT defaults to account for controls
- Growth for municipal wastewater (WW) based on population projections
- Municipal WW emissions based on SIT parameters

Waste Management

Key Assumptions

- Growth Rates
 - Landfills assume constant growth through 2035 at 2008-2020 average annual growth rate. Assume constant collection efficiency
 - Industrial solid waste based on SIT default assumption of 7% of MSW emissions
 - Municipal wastewater based on historic population growth (1990-2007) and population projections (2009-2035)

Key Uncertainties

- Future controls applied to uncontrolled landfills
- Industrial landfills SIT default of 7% of municipal landfills
- Municipal and WW based on SIT default parameters, including assumption of zero biosolids land application.
- No data available for industrial WW at time of study. Not included in this I&F.

Forestry and Land Use Emissions (MMtCO₂e)

Sector	1990	<u> 1995</u>	2000	2005	2007	2010	<u>2015</u>	2025	2035
Forest Land									
	4.58	4.10	3.57	8.96	3.85	0.05	0.05	0.06	0.06
Forest Fires									
(Prescribed Burns)	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17
Urban Forests									
Orban rolesis	-0.005	-0.005	-0.005	-0.006	-0.006	-0.005	-0.005	-0.006	-0.006
Non-farm Fertilizer									
(Settlement Soils)	0.05	0.06	0.06	0.08	0.08	0.08	0.09	0.09	0.10
Total	5.79	5.32	4.79	10.20	5.09	1.29	1.29	1.31	1.32

Forestry & Land Use

Data Sources

- USFS carbon stock and flux data from US Forest Service (USFS) Carbon On-Line Estimator (COLE)
- County-level estimates of forest and urban acreage for 1992, 2001, and 2005 provided by the Southern California Association of Governments (SCAG)
- Prescribed burn acreage from South Coast Air Quality Management District
- US EPA SIT default data for urban forestry canopy coverage and sequestration rate, and non-farm fertilizer use

Methods

- Carbon stocks and flux: USFS COLE provides county-level carbon stock for several years as well as change in stock between years. Change in forest acreage was calculated for each year.
- Acres burned in fires were multiplied by emissions factors for CH₄ and N₂O.
- US EPA SIT Forestry and Land-use module provides urban carbon sequestration and canopy cover. Change in urban area was accounted for as well.
- Statewide non-farm fertilizer use from EPA SIT module was allocated to SCAG region based on percentage of developed land.

Forestry & Land Use

Key Assumptions

- Available carbon stock changes representative of current and historical conditions
- No significant change in sequestration from 2008-2035

Key Uncertainties

- Effects of near-term climate change on forest sequestration levels
- Projections in forest land change, urban forestry change, and settlement soils are all based on expected growth in developed area driven by population predictions
- Prescribed buns assumed to stay the same over historical and projected period

Comments / Questions on Draft I&F from PSC Meeting #1

- Industrial Processes Sector:
 - Does the forecast account for future changes in industry?
 - Awareness of the importance of which sectors the jobs are in. For example, a semi-conductor job expands into an estimated half a million dollars in the local economy.
- Residential, Commercial, and Industrial (RCI) Direct-Fuel Use Sectors
 - International Warehouse Association has data from their members on the heating/cooling for their buildings
- Waste Management Sector:
 - Emissions for the recycling and waste sector look very high.
- Forestry Sector:
 - Clarification of forestland ownership (local, state, federal) categories included in SCAG data needed.
 - How much of the carbon flux is from growth versus land conversion?
 - Are we using the same baseline as ARB in AB 32?
- Electricity Supply Sector
 - PSC agreed that additional work is needed to collect information to enable better estimate of historical emissions; we have good data from EPA EGRID for 2000, 2004, and 2005 but methods for estimating historical emissions back to 1990 need work
 - Use of ARB statewide emission factor for estimating emissions associated with electricity imported into the SCAG region may need revisions
 - Clarify energy intensity assumptions

NEXT STEPS

Next Steps for ECR Technical Work Group

- Approve additions to the Catalog
- Review and discuss improvements to the GHG emissions Inventory and Forecast

Next ECR TWG Meeting

• Agenda:

 Review/Approve expanded Catalog of State Actions

 Review TWG suggested updates to the emissions inventory and projection

• Date: Thursday, October 14th

• Time: 10:00pm-12:00pm (PT)

Public Input, Announcements

Adjourn